
Dynamic 
Programming

• Dynamic Programming is mainly an optimization 
over plain recursion. 

• Wherever we see a recursive solution that has 
repeated calls for same inputs, we can optimize it 
using Dynamic Programming.

• The idea is to simply store the results of 
subproblems, so that we do not have to re-compute 
them when needed later.

• Dynamic programming is both a mathematical 
optimization method and a computer 
programming method. 

• The method was developed by Richard Bellman in 
the 1950s and has found applications in numerous 
fields, from aerospace engineering to economics.



• Like divide-and-conquer method, Dynamic Programming solves problems by 
combining the solutions of subproblems. ...

• Moreover, Dynamic Programming algorithm solves each sub-problem just once 
and then saves its answer in a table, thereby avoiding the work of re-computing 
the answer every time.

• Dynamic programming is an algorithm design method that can be used when the 
solution to a problem can be viewed as the result of a sequence of decisions.



Principle of 
optimality

The principle of optimality states that an 
optimal sequence of decisions has the 
property that whatever the initial state and 
decision are , the remaining decisions must 
constitute an optimal decision sequence with 
regard to the state resulting from the first 
decision.



Applications 
of Dynamic 
Programming

• All Pairs Shortest Paths

• Single Source Shortest Paths General 
Weights

• Optimal Binary Search Tree

• String Edition

• 0/1 Knapsack Problem

• Reliability Design



All Pairs 
Shortest 
Paths

• The all pair shortest path algorithm is 
also known as Floyd-Warshall algorithm 
is used to find all pair shortest 
path problem from a given weighted 
graph. 

• As a result of this algorithm, it will 
generate a matrix, which will represent 
the minimum distance from any node 
to all other nodes in the graph.



• Let G = (V, E) be a directed graph with n vertices.

• The all-pairs shortest-path problem is to determine a matrix A such 
that A(i,j)is the length of a shortest path from i toj.

• A(i,j)={ 0 if i=j
the weight of the directed edge ⟨i,j⟩ if i≠j and

⟨i,j⟩∈E ∞ if i≠j and ⟨i,j⟩∉E

A(i,j)= min { min {A^k(i,k) +A^k-1(k,j)},cost(i, j)}

i<k<n



Algorithm for All pairs shortest paths



Example



Example:



Time Complexity of APSP

• Time complexity of Floyd Warshall Algorithm is Θ(V3), here V is the 
number of vertices in the graph.



Single Source Shortest Paths General Weights

• The idea is to use Bellman–Ford algorithm to compute the 
shortest paths from a single source vertex to all of the other 
vertices in given weighted digraph.

• Bellman–Ford algorithm is slower than Dijkstra's Algorithm but 
it is capable of handling negative weights edges in 
the graph unlike Dijkstra's.



Single Source Shortest 
Paths(General Weights)

• When negative edge lengths are 
permitted ,we require that the graph 
have no cycles of negative length. 
This is necessary to ensure that 
shortest paths consist of a finite 
number of edge.



Example



Algorithm for SSSP



Time Complexity

• The over all complexity is (O3)when adjacency matrices are used and 
0(ne)when adjacency lists are used.



Optimal Binary Search Tree

➢A Binary Search Tree (BST) is a tree where the key values are 
stored in the internal nodes.

➢ The external nodes are null nodes. 

➢The keys are ordered lexicographically, i.e. for each internal 
node all the keys in the left sub-tree are less than the keys in 
the node, and all the keys in the right sub-tree are greater.

➢ An optimal binary search tree is a BST, which has minimal 
expected cost of locating each node.



Optimal Binary Search Tree

➢Search time of an element in a BST is O(n), whereas in a Balanced-
BST search time is O(log n).

➢Again the search time can be improved in Optimal Cost Binary 
Search Tree, placing the most frequently used data in the root and 
closer to the root element, while placing the least frequently used 
data near leaves and in leaves.

➢Here we assume, the probability of accessing a key Ki is pi.

➢ Some dummy keys (d0, d1, d2, ... dn) are added as some searches 
may be performed for the values which are not present in the Key 
set K. 

➢We assume, for each dummy key di probability of access is qi.



Important steps

• OBST(i, j) denotes the optimal binary search tree containing the keys 
ki, ki+1, …, kj;

• Wi, j denotes the weight matrix for OBST(i, j) Wi, j can be defined 
using the following formula: W,  

• Ci, j, 0 ≤ i ≤ j ≤ n denotes the cost matrix for OBST(i, j) Ci, j can be 
defined recursively, in the following manner: 

• Ci, i = Wi, j 

• Ci, j = Wi, j + mini (Ci,k-1+Ck,j)

𝑖 < 𝑘 ≤ 𝑗

• Ri, j, 0 ≤ i ≤ j ≤ n denotes the root matrix for OBST(i, j) 



Algorithm for OBST



Example

• Let n = 4 and (a1,a2,a3,a4) = (do,if, int,while).Let p(l:4) = (3,3,1,1) and 
q(0:4) = (2,3,1,1,1). The p’s and q’s have been multiplied by 16 for 
convenience. Initially, we have w(i,i)= q(i),c(i,i) = 0 and r(i,i)= 0,0 <i <4.

• W(I,j)=p(j)+q(j)+w(I,j-1)



Computations



Solution Table



OBST



Time Complexity

• The algorithm requires O (n3) time, since three nested for loops 
are used. Each of these loops takes on at most n values.



Exercise:

• Use function OBST to compute w(i,j),r(i,j),and c(i,j), 0 < i < j < 4, for 
the identifier set (01,02,03,04) = (cout , float , if, while) with p(l)= 
1/20,p(2) = 1/5,p(3) = 1/10,p(4) = 1/20,q(0)= 1/5,q(l) = 1/10,q(2)= 
1/5,q(3)= 1/20,and q(4)= 1/20.Usingthe r(i,j)'s, construct the optimal 
binary search tree. 



STRING EDITING

• Given two strings (sequences) return the “distance” between the two 
strings as measured by... 

• The minimum number of “character edit operations” needed to turn 
one sequence into the other is known as String Edit Distance.

• X=Andrew, Y=Amdrewz

1. substitute m to n 

2. delete the z 

There fore Distance = 2 



STRING EDITING

➢String distance metrics:• Given strings s and t

➢Distance is the shortest sequence of edit commands that transform s 
to t, (or equivalently s to t).

➢Simple set of operations: 
➢Copy character from s over to t (cost 0) 

➢Delete a character in s (cost 1)

➢Insert a character in t (cost 1)

➢ Substitute one character for another (cost 1)

➢This is “Levenshtein distance”



Levenshtein distance - example

1.Distance(“William Cohen” , “Willliam Cohon”)

2. “Another fine day in the park “

“Anybody can see him pick the ball” 



Applications

• File Revision

• Spelling Correction

• Plagiarism Detection

• Speech Recognition

• Molecular Biology(DNA test)



Approach:

➢For i = j = 0,cost(i,j) = 0,since the two sequences are identical(and 
empty).

➢Also, if j = 0 and i >0,we can transform X into Y by a sequence of 
deletes.

➢Thus, cost(i,0) = cost(i-1,0) +D(xi).

➢Similarly, if i = 0 and j >0, we get cost(0, j) = cost(0, j -1)+I(yj).

➢If i >0 and j > 0,x1,x2, … xi can be transformed into yi,y2,---,yj in one 
of three ways: 



Approach:



Formula:



Example:

• Consider the string editing problem of X = a,a,b,a,b and Y = b,a,b,b. 
Each insertion and deletion has a unit cost and a change costs 2 units. 
For the cases i = 0,j >1,and j = 0, i >1,cost(i,j) can be computed first 
.Let us compute the rest of the entries in row-major order. The next 
entry to be computed is cost(1,1).



Example:



Table of Values



Time Complexity

• The time-complexity of the algorithm is O(|s1|*|s2|), i.e. O(n2) if the 
lengths of both strings is about `n'.



Reliability Design

• In reliability design, the problem is to design a system that is 
composed of several devices connected in series.

• If we imagine that r1 is the reliability of the device.

• Then the reliability of the function can be given by πr1.

• So, if we duplicate the devices at each stage then the reliability 
of the system can be increased.



Reliability Design

• It can be said that multiple copies of the same device type are 
connected in parallel through the use of switching circuits. 

• Here, switching circuit determines which devices in any given 
group are functioning properly. 

• Then they make use of such devices at each stage, that result is 
increase in reliability at each stage.

• If at each stage, there are mi similar types of devices Di, then 
the probability that all mi have a malfunction is (1 - ri)^mi, 
which is very less.



Reliability Design

• If at each stage, there are mi similar types of devices Di, then 
the probability that all mi have a malfunction is (1 - ri)^mi, 
which is very less.

• And the reliability of the stage 1 becomes (1 – (1 - ri) ^mi).

• Thus, if ri = 0.99 and mi = 2, then the stage reliability 
becomes 0.9999 which is almost equal to 1. 

• Which is much better than that of the previous case or we can 
say the reliability is little less than 1 - (1 - ri) ^mi because of 
less reliability of switching circuits.



Reliability Design

In reliability design, we try to use device duplication to maximize reliability. But this 

maximization should be considered along with the cost.



Reliability Design

• Let c is the maximum allowable cost and ci be the cost of each 
unit of device i. Then the maximization problem can be given as 
follows:

• The upper bound Ui follows from the observation that mj>=1.



Reliability Design

• The principal of optimality holds and 

• For any fi(x), i >1,this equation generalizes 



Problem

• We are to design a three stage system with device types D1,D2and 
D3. The costs are$30,$15,and $20 respectively. The cost of the system 
is to be no more than $105.The reliability of each device type is 
0.9,0.8 and 0.5 respectively. 



Procedure

• We assume that if stage i has mi devices of type i in parallel, then 
Øi(mi)= 1-(1-ri)

mi. In terms of the notation used earlier, c1 = 30,C2 = 
15,C3= 20,c = 105, r1 = .9,r2 = .8,r3 = .5,u1=2,U2 = 3, and u3 = 3.



Solution



Solution



0/1 KNAPSACK 



0/1 KNAPSACK Problem:

• Consider the knapsack instance  n = 3,(w1,w2,w3) = (2,3,4), (p1,p2,p3) = 
(1,2,5), and m = 6.



Solution

Note that the pair (3, 5) has been eliminated from S3 as a result of the purging rule stated above.




